

Conjugacy Classes of Torsion Elements in the Crystallographic Group $B_n/[P_n, P_n]$

OSCAR OCAMPO*

*UFBA

Resumo

Let B_n (resp. P_n) denote the Artin braid group (resp. the Artin pure braid group) with n strings and let $n \ge 3$. We show that the quotient $\frac{B_n}{[P_n, P_n]}$ is a crystallographic group, where $[P_n, P_n]$ means the commutator subgroup of P_n . This quotient has torsion elements in contrast to the (pure) braid groups P_n and B_n . We classify the torsion elements and its conjugacy classes in the crystallographic group $\frac{B_n}{[P_n, P_n]}$. Finally, for $n \le 7$ we show that $\frac{B_n}{[P_n, P_n]}$ does not have non-abelian finite subgroups. The case n > 7 seems to be an open question, or possibly the classification of all non-abelian subgroups of $B_n/[P_n, P_n]$ for n > 7 can be more general.